Covering Space Theory for Directed Topology
نویسندگان
چکیده
The state space of a machine admits the structure of time. For example, the geometric realization of a precubical set, a generalization of an unlabeled asynchronous transition system, admits a “local preorder” encoding control flow. In the case where time does not loop, the “locally preordered” state space splits into causally distinct components. The set of such components often gives a computable invariant of machine behavior. In the general case, no such meaningful partition could exist. However, as we show in this note, the locally preordered geometric realization of a precubical set admits a “locally monotone” covering from a state space in which time does not loop. Thus we hope to extend geometric techniques in static program analysis to looping processes.
منابع مشابه
POINTWISE CONVERGENCE TOPOLOGY AND FUNCTION SPACES IN FUZZY ANALYSIS
We study the space of all continuous fuzzy-valued functions from a space $X$ into the space of fuzzy numbers $(mathbb{E}sp{1},dsb{infty})$ endowed with the pointwise convergence topology. Our results generalize the classical ones for continuous real-valued functions. The field of applications of this approach seems to be large, since the classical case allows many known devices to be fi...
متن کاملDefinition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کاملTopological characterizations to three types of covering approximation operators
Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Topology, one of the most important subjects in mathematics, provides mathematical tools and interesting topics in studying information systems and rough sets. In this paper, we present the topological characterizations to three types of covering approximation operators. F...
متن کاملConvergence and quantale-enriched categories
Generalising Nachbin's theory of ``topology and order'', in this paper we continue the study of quantale-enriched categories equipped with a compact Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces with ultrafilter-quantale-enriched categories, and show that the presence of a compact Hausdorff topology guarantees Cauchy completeness and (suitably defined) ...
متن کاملTopological structure on generalized approximation space related to n-arry relation
Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...
متن کامل